

LA-UR-15-24831

Approved for public release; distribution is unlimited.

Experimental Design and Comparative Testing of a Hybrid-Cooled Computer Cluster Thesis Presentation Title:

Author(s): Bonnie, Amanda Marie

Intended for: Thesis Defense

Issued: 2015-06-28

Experimental Design and Comparative Testing of a Hybrid-Cooled Computer Cluster

Amanda Bonnie

Committee: Payman Zarkesh-Ha, James Plusquellic, and Tarief Elshafiey

June 30, 2015

LA-UR-00-0000

This work was performed using facilities and resources at Los Alamos National Laboratory and was funded by the United States Department of Defense.

- The author thanks her committee members for their review of this work
 - Thank You Dr. Payman, Dr. Plusquellic, and Professor Elshafiey
- The author thanks her direct management for allowing the time to complete this work, along with the support to make it happen.
- The author thanks those at Chilldyne for efforts in water cooling design.
- The author thanks the facilities team and many others at LANL for their added support in facilitating this experimentation
- The author thanks her husband for his continued support through all adventures in life.

Outline

- Introduction
 - Contributions
- Background
- Theory
- Testbed Overview
 - The Cluster
 - The Water

- Testing Setup
- Results
- Discussion
- Conclusion
- Future Work

Introduction

- HPC is growing towards exascale; machine room and/or data center is expanding.
- 2. Cluster density is growing; more to cool.
- DOE mandated PUE
- 4. Total cost of ownership concerns; nearly 30% of a data center electricity bill is spent on cooling

Contributions

- User-space LDMS dameons
- Deployment, configuration, and support of the TAMIRS cluster at LANL.
- Contract management and installation of hybrid water cooling system.
- Integration of a test suite for monitoring and benchmarking the system for comparative analysis

Background

- Liquid cooling is NOT novel.
- Cray-2: immersion cooled in Fluorinert in the early 1980s
- NREL: warm water cooling, using waste heat as a main heat source for heating the building
- Sequoia: LLNL reached Top 500 with warm water cooled cluster @ 16 petaflops
- IBM: showed ability to reach 34% increase in processor frequency resulting in 33% increase in performance over same air cooled node

THEORY

COSTS, POWER, and JITTER

Theory – Costs

- Water cooling still costs money BUT...
 - AIR Cooling is expensive too!
- The Data Center of this study has 18 Computer Room Air Conditioning Units (CRACS)
 - 18 consume ~350kW of power
 - Providing 2069kW of cooling capacity
 - At 350kW for the room and \$0.1256/kW/h
 - \$385,100/year to run the CRAC units (not counting water)
- The full scale water system uses 3 kW of power to cool 200 kW

Theory – Costs

- AIR:
 - 2069kW Cooling / 350kW Power
 - 5.9 cooling / power
- WATER:
 - 200kW Cooling / 3kW Power
 - 66.66 cooling / power

Theory – Power

- Fans use power too!
- The nodes for this study have:
 - 6 X Nidec UltraFlow 12VDC, 2.31A fans @ 158CFM
- At full speed that is nearly 166W per node
- For 20 nodes that 3kW of power just for fans!

- Jitter (noise) can be caused by various means:
 - OS, CPU, and many components
- HPC codes are tightly coupled across the entire job
 - Slowest node, with the slowest core, slows down the entire job
 - Decreases performance of the overall job
 - Increase the job run time

TESTBED OVERVIEW

CLUSTER & INSTALLING THE WATER

- TAMIRS:
 - Tiered Active Multi-dimensional Indexed Record Store
- 22 Dell PowerEdge R920 nodes
- 2 Custom SuperMicro nodes
- 4 Dell PowerEdge R720 management nodes
- Purpose: Exploration of next generation tiered storage technologies
- Shared for this study
 - 4 air nodes & 4 water nodes

- TAMIRS:
 - Tiered Active Multi-dimensional Indexed Record Store
- 22 Dell PowerEdge R920 nodes
- 2 Custom SuperMicro nodes
- 4 Dell PowerEdge R720 management nodes
- Purpose: Exploration of next generation tiered storage technologies
- Shared for this study
 - 4 air nodes & 4 water nodes

Testbed Overview - Cluster

- Air
 - ─ Node 1 4
- Water
 - Node 11 14

The Install

- Chilldyne Inc,
 - Standalone Chiller Unit
 - Control Inlet Temperature
 - CDU rack
 - CDU X 2 + Vacuum X 2
 - Under floor tubing
 - Above floor tubing
 - Water Block Install

TESTING SETUP

TEST CONFIGURATION & MONITORING

Testing Setup

- Pavillion: Testing harness in development @ LANL
 - Allows for building a test suite to run the same consistent configurations multiple times
 - Integrated LDMS daemon tool to launch with job
- HPL: High Performance LINPACK
- Systemburn: Software package from ORNL to create methodical system loads
 - DGEMM: double precision matrix multiplication
 - DSTREAM: double precision floating point vector streaming.
 - PV3: power hungry streaming computational algorithm

Test Name	What is Run	Time To Run [MIN]	X5
HPL	HPL.dat	~84	420
DGEMM	DGEMM_LARGE & DGEMM_SMALL & SLEEP	105	525
DSTREAM	DSTREAM & SLEEP	45	225
PV2	PV2 & SLEEP	45	225
	TOTAL TIME:	279	1395

~ 24 HOURS OF RAW TESTING

- LDMS: Lightweight Distributed Metric System
 - Daemon that runs on the nodes sending data to collective source during job run
 - Temperature via Im_sensors
- PDU: Power Distribution Units
 - APC AP8641 allow for measurement at each individual plug
- RAPL: Running Average Power Limit
 - Intel tool for power capping
 - Allows for power metering at the CPU

RESULTS

PERFORMANCE, TEMPERATURE, RAPL, & PDU DATA

Performance HPL

Cooling Method	Result [GFLOPS]	STDEV	% Improved
AIR	1247	9.37	
WATER (65°)	1257	11.04	0.80 %
WATER (75°)	1260	14.13	1.04 %

Cooling Method	MIN. [MFLOPS]	MEAN [MFLOPS]	MAX. [MFLOPS]	% Improved (Mean)
AIR	356.19	367.44	381.63	
WATER (65°)	<u>371.11</u>	378.93	393.16	3.12 %
WATER (75°)	<u>366.11</u>	375.54	387.00	2.20 %

~3-4 % higher minimum

Cooling Method	MIN. [MFLOPS]	MEAN [MFLOPS]	MAX. [MFLOPS]	% Improved (Mean)
AIR	354.19	360.32	366.58	
WATER (65°)	348.81	360.19	367.92	-0.04 %
WATER (75°)	353.94	361.81	367.47	0.45 %

Cooling Method	MIN. [MTRIPS/s]	MEAN [MTRIPS/s]	MAX. [MTRIPS/s]	% Improved (Mean)
AIR	22.49	23.47	24.13	
WATER (65°)	23.92	24.09	24.18	2.66 %
WATER (75°)	23.90	24.08	24.192	2.60 %

~6% higher minimum

RESULTS

TEMPERATURE

Temperature HPL

Temperature DGEMM

Temperature DSTREAM

Temperature PV3

RESULTS

POWER: RAPL

RAPL HPL

RAPL DGEMM

RAPL DSTREAM

RAPL PV3

RESULTS

POWER: PDU

PDU HPL

PDU DGEMM

PDU DSTREAM

PDU PV3

DISCUSSION

PERFORMANCE, TEMPERATURE, RAPL & PDU DATA

- Particular architecture did not benefit from being cooler
 - Power limits could not be turned off to enable longer bursts of turbo clock
- Systemburn showed improved MINIMUM performance values.
 - Increased Min. by <u>4.19%</u> and <u>6.27%</u> from air to water in DGEMM and PV2 respectively
- At scale this could have a greater effect on overall performance as it seems to have reduced jitter.

- Temperature of the core was cooler!
 - 20°C cooler with 65°F water
 - 15°C cooler with 75°F water
- Tighter temperature bands were observed node to node.
- If temperatures were warm enough on even one core, that core could throttle.
 - Keeping it cooler to start, prevents the chance of thermal throttling.

- The estimated power use between air and water cooled CPUs was about the same.
- The plots showed a much smoother representation of the package power usage
 - Air tests had lots of jumps
 - Water tests were smooth
- It is not clear what method is used under the covers with RAPL; but from changes in plots, it is expected temperature is considered in some form.
- Perhaps this shows reduced leakage current?

- Power data from the PDUs provided proof of reduce power use between air and water cooled nodes.
- Hard to argue:
 - Fans alone or CPUs running cooler? RAPL not so clear.
- BUT! ~30W power savings per node was observed.
- Over the 4 nodes → 120W
- At 2.88kWh/day → \$131 saved in a year (for 4 nodes)
- Scaled up to 20 nodes → 14.4/kWh/day → \$658 / year

BONUS!

INTERESTING FIND

BONUS - Data

Conclusions

- Not a major performance gain on average from water alone.
 - Minimum performance improved.
- Idle and load temperatures were significantly reduced.
 - COULD provide greater longevity and better resiliency
- Large cost savings at scale.
 - Factor in reduced CRAC and CHILLER costs!
- RAPL suggests little to no power efficiency gains at chip level.
 - Perhaps reduced leakage current?

Conclusions

- PDU data showed significant power savings.
 - 30W per node → TAMIRS ~600W savings
 - Could significantly scale to clusters of Trinity's size of over 19,000 nodes.
- BONUS: Manufacture layouts can cause some issues.
 - 10°C Temperature difference between CPU0 and CPU1.
 - This could be the difference in a slow core.
 - Widespread temperature band on air cores.
- Lots of potential for power and cooling cost savings.

Future Work

Warm Water Cooling:

- Plan to test warmer inlet temperatures.
- Need more nodes to help maintain the warmer water with dummy loads.
- Extrapolation from this test suggests 101°F inlet.
 temperature would be SAFE.

Tightly Coupled Applications:

- Synthetic benchmarks used were designed to maximize power use and throughput.
- Plan to test more synchronous dependent workloads.

Future Work

Looking at Scale:

- Cluster being a shared resource was not able to be retrofit completely with water cooling.
- Plan is to get the rest of the 20 compute nodes under water and do more testing.

Publish:

- SC '15 Power Workshop (August Deadline)
- Full SC '16 Paper?

QUESTIONS?

THANK YOU

